Griffin Chow / 各大模型对比 25-10-20版

Created Sat, 25 Oct 2025 00:00:00 +0000 Modified Thu, 06 Nov 2025 04:24:59 +0000
3624 Words

各大模型及版本功能对比

本文档全面对比当前主流大语言模型及其不同版本的各项性能指标,帮助您了解各模型的特点和适用场景。

1. 综合性能对比

以下图表展示了各大模型在关键指标上的对比:

1.1 核心参数对比

{
  "title": {
    "text": "各大模型核心参数对比",
    "subtext": "参数量、训练成本、上下文窗口"
  },
  "tooltip": {
    "trigger": "axis",
    "axisPointer": {
      "type": "shadow"
    }
  },
  "legend": {
    "data": ["参数量(十亿)", "训练成本(百万美元)", "上下文窗口(K tokens)/10"]
  },
  "grid": {
    "left": "3%",
    "right": "4%",
    "bottom": "3%",
    "containLabel": true
  },
  "xAxis": {
    "type": "category",
    "data": ["DeepSeek V3", "DeepSeek R1", "Claude 3.5 Sonnet", "Claude 3 Opus", "GPT-4 Turbo", "GPT-4o", "Gemini 1.5 Pro", "Llama 3.1 405B"]
  },
  "yAxis": {
    "type": "value",
    "name": "数值"
  },
  "series": [
    {
      "name": "参数量(十亿)",
      "type": "bar",
      "data": [671, 671, 100, 175, 170, 200, 150, 405],
      "itemStyle": {
        "color": "#5470c6"
      }
    },
    {
      "name": "训练成本(百万美元)",
      "type": "bar",
      "data": [5.58, 5.5, 10, 15, 100, 80, 60, 50],
      "itemStyle": {
        "color": "#91cc75"
      }
    },
    {
      "name": "上下文窗口(K tokens)/10",
      "type": "bar",
      "data": [6.4, 12.8, 20, 20, 12.8, 12.8, 100, 12.8],
      "itemStyle": {
        "color": "#fac858"
      }
    }
  ]
}

1.2 能力评分雷达图

{
  "title": {
    "text": "主流模型能力评分对比",
    "subtext": "多维度能力评估(满分100)"
  },
  "tooltip": {
    "trigger": "item"
  },
  "legend": {
    "data": ["DeepSeek V3", "DeepSeek R1", "Claude 3.5 Sonnet", "GPT-4o", "Gemini 1.5 Pro"],
    "bottom": 0
  },
  "radar": {
    "indicator": [
      { "name": "数学推理", "max": 100 },
      { "name": "代码生成", "max": 100 },
      { "name": "多语言理解", "max": 100 },
      { "name": "长文本处理", "max": 100 },
      { "name": "创意写作", "max": 100 },
      { "name": "逻辑推理", "max": 100 }
    ]
  },
  "series": [{
    "name": "模型能力对比",
    "type": "radar",
    "data": [
      {
        "value": [85, 83, 88, 70, 82, 87],
        "name": "DeepSeek V3",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [97, 49, 90, 85, 75, 95],
        "name": "DeepSeek R1",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [90, 73, 92, 88, 88, 91],
        "name": "Claude 3.5 Sonnet",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [88, 87, 89, 85, 90, 89],
        "name": "GPT-4o",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [86, 75, 91, 95, 84, 85],
        "name": "Gemini 1.5 Pro",
        "areaStyle": {
          "opacity": 0.3
        }
      }
    ]
  }]
}

2. DeepSeek 系列对比

2.1 DeepSeek V3 vs R1 详细对比

{
  "title": {
    "text": "DeepSeek V3 与 R1 性能对比",
    "subtext": "同系列不同版本的特性差异"
  },
  "tooltip": {
    "trigger": "axis"
  },
  "legend": {
    "data": ["DeepSeek V3", "DeepSeek R1"]
  },
  "radar": {
    "indicator": [
      { "name": "MMLU (数学)", "max": 100 },
      { "name": "HumanEval (代码)", "max": 100 },
      { "name": "MATH-500", "max": 100 },
      { "name": "GPQA (科学)", "max": 100 },
      { "name": "DROP (阅读)", "max": 100 },
      { "name": "IFEval (指令)", "max": 100 },
      { "name": "BBH (推理)", "max": 100 },
      { "name": "AIME 2024", "max": 100 }
    ]
  },
  "series": [{
    "name": "性能对比",
    "type": "radar",
    "data": [
      {
        "value": [85.5, 82.6, 78.3, 71.2, 88.5, 84.9, 86.1, 39.2],
        "name": "DeepSeek V3",
        "lineStyle": {
          "width": 3
        },
        "areaStyle": {
          "opacity": 0.4
        }
      },
      {
        "value": [90.8, 49.2, 97.3, 77.5, 91.6, 88.3, 92.3, 79.8],
        "name": "DeepSeek R1",
        "lineStyle": {
          "width": 3
        },
        "areaStyle": {
          "opacity": 0.4
        }
      }
    ]
  }]
}

2.2 DeepSeek 版本特性对比表

{
  "title": {
    "text": "DeepSeek 系列版本特性",
    "subtext": "开源性、成本效益、专长领域"
  },
  "tooltip": {
    "trigger": "axis",
    "axisPointer": {
      "type": "shadow"
    }
  },
  "legend": {
    "data": ["数学推理得分", "代码生成得分", "综合能力得分"]
  },
  "xAxis": {
    "type": "category",
    "data": ["V3", "R1"]
  },
  "yAxis": {
    "type": "value",
    "name": "得分",
    "max": 100
  },
  "series": [
    {
      "name": "数学推理得分",
      "type": "bar",
      "data": [85.5, 97.3],
      "itemStyle": {
        "color": "#ee6666"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    },
    {
      "name": "代码生成得分",
      "type": "bar",
      "data": [82.6, 49.2],
      "itemStyle": {
        "color": "#5470c6"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    },
    {
      "name": "综合能力得分",
      "type": "bar",
      "data": [84.2, 87.6],
      "itemStyle": {
        "color": "#91cc75"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    }
  ]
}

3. Claude 系列对比

3.1 Claude 各版本性能对比

{
  "title": {
    "text": "Claude 系列模型性能对比",
    "subtext": "Anthropic Claude 3/3.5 系列全面对比"
  },
  "tooltip": {
    "trigger": "axis"
  },
  "legend": {
    "data": ["Claude 3.5 Sonnet", "Claude 3 Opus", "Claude 3 Sonnet", "Claude 3 Haiku"]
  },
  "radar": {
    "indicator": [
      { "name": "MMLU", "max": 100 },
      { "name": "代码能力", "max": 100 },
      { "name": "数学推理", "max": 100 },
      { "name": "多语言", "max": 100 },
      { "name": "长文本", "max": 100 },
      { "name": "创意写作", "max": 100 },
      { "name": "分析能力", "max": 100 }
    ]
  },
  "series": [{
    "name": "Claude 系列对比",
    "type": "radar",
    "data": [
      {
        "value": [88.7, 92.0, 90.0, 92.0, 88.0, 88.0, 90.0],
        "name": "Claude 3.5 Sonnet",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [86.8, 84.9, 88.0, 90.0, 85.0, 87.0, 89.0],
        "name": "Claude 3 Opus",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [79.0, 73.0, 75.0, 82.0, 78.0, 80.0, 79.0],
        "name": "Claude 3 Sonnet",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [75.2, 75.9, 72.0, 78.0, 75.0, 76.0, 74.0],
        "name": "Claude 3 Haiku",
        "areaStyle": {
          "opacity": 0.3
        }
      }
    ]
  }]
}

3.2 Claude 版本定位与价格

{
  "title": {
    "text": "Claude 系列版本定位",
    "subtext": "性能与成本的平衡"
  },
  "tooltip": {
    "trigger": "axis",
    "axisPointer": {
      "type": "cross"
    }
  },
  "legend": {
    "data": ["综合性能得分", "API价格($/1M tokens)"]
  },
  "xAxis": {
    "type": "category",
    "data": ["Haiku", "Sonnet", "Sonnet 3.5", "Opus"]
  },
  "yAxis": [
    {
      "type": "value",
      "name": "性能得分",
      "position": "left",
      "max": 100
    },
    {
      "type": "value",
      "name": "价格($)",
      "position": "right",
      "max": 20
    }
  ],
  "series": [
    {
      "name": "综合性能得分",
      "type": "line",
      "data": [75, 79, 89, 87],
      "smooth": true,
      "lineStyle": {
        "width": 3
      },
      "itemStyle": {
        "color": "#5470c6"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    },
    {
      "name": "API价格($/1M tokens)",
      "type": "line",
      "yAxisIndex": 1,
      "data": [0.25, 3, 3, 15],
      "smooth": true,
      "lineStyle": {
        "width": 3
      },
      "itemStyle": {
        "color": "#ee6666"
      },
      "label": {
        "show": true,
        "position": "bottom"
      }
    }
  ]
}

4. GPT 系列对比

4.1 OpenAI GPT-4 系列对比

{
  "title": {
    "text": "GPT-4 系列模型对比",
    "subtext": "OpenAI GPT-4 各版本性能分析"
  },
  "tooltip": {
    "trigger": "axis"
  },
  "legend": {
    "data": ["GPT-4o", "GPT-4 Turbo", "GPT-4", "GPT-3.5 Turbo"]
  },
  "radar": {
    "indicator": [
      { "name": "MMLU", "max": 100 },
      { "name": "代码能力", "max": 100 },
      { "name": "数学", "max": 100 },
      { "name": "多模态", "max": 100 },
      { "name": "速度", "max": 100 },
      { "name": "成本效益", "max": 100 }
    ]
  },
  "series": [{
    "name": "GPT 系列对比",
    "type": "radar",
    "data": [
      {
        "value": [88.7, 90.2, 87.5, 95.0, 92.0, 85.0],
        "name": "GPT-4o",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [86.4, 85.4, 84.0, 88.0, 85.0, 80.0],
        "name": "GPT-4 Turbo",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [86.4, 82.0, 82.0, 85.0, 65.0, 60.0],
        "name": "GPT-4",
        "areaStyle": {
          "opacity": 0.3
        }
      },
      {
        "value": [70.0, 72.5, 68.0, 0, 95.0, 95.0],
        "name": "GPT-3.5 Turbo",
        "areaStyle": {
          "opacity": 0.3
        }
      }
    ]
  }]
}

5. 全模型综合对比

5.1 性能与成本散点图

{
  "title": {
    "text": "大模型性能与成本关系",
    "subtext": "综合性能得分 vs 训练成本"
  },
  "tooltip": {
    "trigger": "item",
    "formatter": "{a} <br/>{b}: ({c})"
  },
  "xAxis": {
    "type": "value",
    "name": "训练成本(百万美元)",
    "nameLocation": "middle",
    "nameGap": 30
  },
  "yAxis": {
    "type": "value",
    "name": "综合性能得分",
    "nameLocation": "middle",
    "nameGap": 40,
    "max": 100
  },
  "series": [
    {
      "name": "模型",
      "type": "scatter",
      "symbolSize": 20,
      "data": [
        {
          "value": [5.58, 84.2],
          "name": "DeepSeek V3",
          "itemStyle": {"color": "#5470c6"}
        },
        {
          "value": [5.5, 87.6],
          "name": "DeepSeek R1",
          "itemStyle": {"color": "#91cc75"}
        },
        {
          "value": [10, 89.0],
          "name": "Claude 3.5 Sonnet",
          "itemStyle": {"color": "#fac858"}
        },
        {
          "value": [15, 87.0],
          "name": "Claude 3 Opus",
          "itemStyle": {"color": "#ee6666"}
        },
        {
          "value": [100, 88.5],
          "name": "GPT-4 Turbo",
          "itemStyle": {"color": "#73c0de"}
        },
        {
          "value": [80, 89.5],
          "name": "GPT-4o",
          "itemStyle": {"color": "#3ba272"}
        },
        {
          "value": [60, 86.0],
          "name": "Gemini 1.5 Pro",
          "itemStyle": {"color": "#fc8452"}
        },
        {
          "value": [50, 85.0],
          "name": "Llama 3.1 405B",
          "itemStyle": {"color": "#9a60b4"}
        }
      ],
      "label": {
        "show": true,
        "position": "top",
        "formatter": "{b}"
      }
    }
  ]
}

5.2 开源 vs 闭源模型对比

{
  "title": {
    "text": "开源与闭源模型性能对比",
    "subtext": "按模型类型分类"
  },
  "tooltip": {
    "trigger": "axis",
    "axisPointer": {
      "type": "shadow"
    }
  },
  "legend": {
    "data": ["开源模型", "闭源模型"]
  },
  "xAxis": {
    "type": "category",
    "data": ["数学推理", "代码生成", "多语言", "长文本", "综合能力"]
  },
  "yAxis": {
    "type": "value",
    "name": "平均得分",
    "max": 100
  },
  "series": [
    {
      "name": "开源模型",
      "type": "bar",
      "data": [88.5, 72.3, 87.2, 78.5, 84.8],
      "itemStyle": {
        "color": "#91cc75"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    },
    {
      "name": "闭源模型",
      "type": "bar",
      "data": [89.2, 85.7, 90.3, 86.7, 88.5],
      "itemStyle": {
        "color": "#5470c6"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    }
  ]
}

6. 模型特性总结

6.1 各模型核心优势

模型核心优势最佳应用场景开源性
DeepSeek V3超高性价比,代码能力强代码生成、通用对话✅ 开源
DeepSeek R1顶级数学推理,深度思考数学问题、科研推理✅ 开源
Claude 3.5 Sonnet均衡全能,长文本处理文档分析、内容创作❌ 闭源
Claude 3 Opus复杂推理,高质量输出专业写作、深度分析❌ 闭源
GPT-4o多模态能力,速度快图像理解、实时交互❌ 闭源
GPT-4 Turbo综合能力强,生态完善企业应用、API集成❌ 闭源
Gemini 1.5 Pro超长上下文(1M tokens)长文档处理、视频分析❌ 闭源
Llama 3.1 405B最大开源模型私有部署、定制化✅ 开源

6.2 选型建议流程图

{
  "title": {
    "text": "大模型选型决策树",
    "subtext": "根据需求选择合适的模型"
  },
  "tooltip": {
    "trigger": "item",
    "triggerOn": "mousemove"
  },
  "series": [
    {
      "type": "tree",
      "data": [
        {
          "name": "选择大模型",
          "children": [
            {
              "name": "需要开源?",
              "children": [
                {
                  "name": "是",
                  "children": [
                    {
                      "name": "重视数学推理?",
                      "children": [
                        {"name": "DeepSeek R1", "value": 95},
                        {"name": "DeepSeek V3", "value": 85}
                      ]
                    },
                    {"name": "Llama 3.1 405B", "value": 85}
                  ]
                },
                {
                  "name": "否",
                  "children": [
                    {
                      "name": "需要多模态?",
                      "children": [
                        {"name": "GPT-4o", "value": 90},
                        {"name": "Gemini 1.5 Pro", "value": 88}
                      ]
                    },
                    {
                      "name": "重视长文本?",
                      "children": [
                        {"name": "Gemini 1.5 Pro", "value": 95},
                        {"name": "Claude 3.5 Sonnet", "value": 88}
                      ]
                    },
                    {
                      "name": "追求综合能力?",
                      "children": [
                        {"name": "Claude 3.5 Sonnet", "value": 92},
                        {"name": "GPT-4 Turbo", "value": 88}
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      ],
      "top": "10%",
      "bottom": "10%",
      "layout": "orthogonal",
      "orient": "vertical",
      "symbol": "circle",
      "symbolSize": 10,
      "initialTreeDepth": 3,
      "label": {
        "position": "top",
        "verticalAlign": "middle",
        "align": "center",
        "fontSize": 11
      },
      "leaves": {
        "label": {
          "position": "bottom",
          "verticalAlign": "middle",
          "align": "center"
        }
      },
      "expandAndCollapse": true,
      "animationDuration": 550,
      "animationDurationUpdate": 750
    }
  ]
}

7. 性能基准测试详细数据

7.1 编程能力对比 (HumanEval & MBPP)

{
  "title": {
    "text": "编程能力基准测试",
    "subtext": "HumanEval 和 MBPP 得分对比"
  },
  "tooltip": {
    "trigger": "axis"
  },
  "legend": {
    "data": ["HumanEval", "MBPP"]
  },
  "xAxis": {
    "type": "category",
    "data": ["DeepSeek V3", "DeepSeek R1", "Claude 3.5", "GPT-4o", "GPT-4", "Gemini 1.5", "Llama 3.1"]
  },
  "yAxis": {
    "type": "value",
    "name": "通过率 (%)",
    "max": 100
  },
  "series": [
    {
      "name": "HumanEval",
      "type": "bar",
      "data": [82.6, 49.2, 92.0, 90.2, 82.0, 84.1, 88.6],
      "itemStyle": {
        "color": "#5470c6"
      }
    },
    {
      "name": "MBPP",
      "type": "bar",
      "data": [80.5, 45.8, 87.3, 85.7, 78.9, 81.2, 86.0],
      "itemStyle": {
        "color": "#91cc75"
      }
    }
  ]
}

7.2 数学推理能力对比 (MATH & GSM8K)

{
  "title": {
    "text": "数学推理能力测试",
    "subtext": "MATH 和 GSM8K 数据集得分"
  },
  "tooltip": {
    "trigger": "axis",
    "axisPointer": {
      "type": "shadow"
    }
  },
  "legend": {
    "data": ["MATH", "GSM8K"]
  },
  "xAxis": {
    "type": "category",
    "data": ["DeepSeek R1", "Claude 3.5", "GPT-4o", "DeepSeek V3", "GPT-4", "Gemini 1.5", "Llama 3.1"]
  },
  "yAxis": {
    "type": "value",
    "name": "准确率 (%)",
    "max": 100
  },
  "series": [
    {
      "name": "MATH",
      "type": "line",
      "data": [97.3, 78.3, 76.6, 78.3, 74.2, 72.8, 68.5],
      "smooth": true,
      "lineStyle": {
        "width": 3
      },
      "itemStyle": {
        "color": "#ee6666"
      },
      "label": {
        "show": true,
        "position": "top"
      }
    },
    {
      "name": "GSM8K",
      "type": "line",
      "data": [95.8, 96.4, 94.8, 92.2, 92.0, 91.7, 89.5],
      "smooth": true,
      "lineStyle": {
        "width": 3
      },
      "itemStyle": {
        "color": "#5470c6"
      },
      "label": {
        "show": true,
        "position": "bottom"
      }
    }
  ]
}

8. 总结与展望

根据以上数据对比,我们可以得出以下结论:

  1. 性价比之王: DeepSeek V3 以极低的训练成本达到了顶级性能
  2. 数学推理冠军: DeepSeek R1 在数学推理任务上表现卓越
  3. 全能选手: Claude 3.5 Sonnet 在各项指标上都表现均衡
  4. 多模态领先: GPT-4o 在多模态任务上具有明显优势
  5. 长文本专家: Gemini 1.5 Pro 支持最长的上下文窗口
  6. 开源标杆: Llama 3.1 405B 是目前最强大的开源模型

选择模型时,应根据具体应用场景、预算限制和性能需求综合考虑。